sphere radius = 3000 km
start at 43.21, 39.45 (latitude, longitude)
travel 413 kilometers at an angle of 213 degrees
end position is???
----------------------------------------------------------
ref angle of 213 = -(213-180) degrees = -33 degrees
hypotenuse = distance
opposite = latitude
adjacent = longitude
sin(-33) = o/413
413*sin(-33) = o
o = -224.9
r*pi/4 = q
q = 2356.19
o/q*90 = -8.5919 (latitude)
new latitude = 43.21 - 8.5919 = 34.62
-----------------------------------------------------
distance on a sphere:
distance = r*arccos(sin(latitude1)*sin(latitude2)+cos(latitude1)*cos(latitude2)*cos(|longitude1-longitude2|))
solve for e:
longitude2 = longitude1 +/- arccos(sec(latitude1)*sec(latitude2)*cos(distance/r)-tan(latitude1)*tan(latitude2))
latitude1 = 43.21
latitude2 = 34.62
longitude1 = 39.45
longitude2 = sphere radius = 3000 km
start at 43.21, 39.45 (latitude, longitude)
travel 413 kilometers at an angle of 213 degrees
end position is???
----------------------------------------------------------
ref angle of 213 = -(213-180) degrees = -33 degrees
hypotenuse = distance
opposite = latitude
adjacent = longitude
sin(-33) = o/413
413*sin(-33) = o
o = -224.9
r*pi/4 = q
q = 2356.19
o/q*90 = -8.5919 (latitude)
new latitude = 43.21 - 8.5919 = 34.62
-----------------------------------------------------
distance on a sphere:
distance = r*arccos(sin(latitude1)*sin(latitude2)+cos(latitude1)*cos(latitude2)*cos(|longitude1-longitude2|))
solve for e:
longitude2 = longitude1 +/- arccos(sec(latitude1)*sec(latitude2)*cos(distance/r)-tan(latitude1)*tan(latitude2))
latitude1 = 43.21
latitude2 = 34.62
longitude1 = 39.45
longitude2 = 39.45 +/- arccos(sec(43.21)*sec(34.62)*cos(413/3000)-tan(43.21)*tan(34.62))
=shit this gives imaginary result.